#all_no_test
The autoreload extension is already loaded. To reload it, use:
%reload_ext autoreload
load_cfg (path_cfg)
{'start_test': 1942,
'start_train': 140,
'days_to_predict': 'all',
'fobj': None,
'fobj_weight_col': 'total_scaled_weight',
'weight_hess': 1,
'feval': 'mse',
'feval_weight_col': 'scale',
'weight_col': None,
'lgb_params': {'boosting_type': 'gbdt',
'objective': 'regression',
'metric': None,
'subsample': 0.5,
'subsample_freq': 1,
'learning_rate': 0.03,
'num_leaves': 255,
'min_data_in_leaf': 255,
'feature_fraction': 0.8,
'n_estimators': 5000,
'early_stopping_rounds': 50,
'device_type': 'cpu',
'seed': 42,
'verbose': -1},
'target': 'sales',
'p_horizon': 28,
'num_series': 30490,
'features_json': 'final_features.json',
'path_data_raw': '../../../data/raw',
'path_features': '../../../data/features',
'path_models': '../../../data/models',
'use_neptune': 0,
'neptune_project': None,
'neptune_api_token': None}
{'start_test': 1942,
'start_train': 140,
'days_to_predict': 'all',
'fobj': 'mse',
'fobj_weight_col': 'total_scaled_weight',
'weight_hess': 1,
'feval': 'mse',
'feval_weight_col': 'scale',
'weight_col': None,
'lgb_params': {'boosting_type': 'gbdt',
'objective': None,
'metric': None,
'subsample': 0.5,
'subsample_freq': 1,
'learning_rate': 0.03,
'num_leaves': 255,
'min_data_in_leaf': 255,
'feature_fraction': 0.8,
'n_estimators': 1,
'early_stopping_rounds': 50,
'device_type': 'cpu',
'seed': 42,
'verbose': -1},
'target': 'sales',
'p_horizon': 28,
'num_series': 30490,
'features_json': 'pkl_final_features.json',
'path_data_raw': 'data/raw',
'path_features': 'data/features',
'path_models': 'data/models',
'use_neptune': 0,
'neptune_project': 0,
'neptune_api_token': None}
{'fe_base.csv': ['dept_id', 'store_id'],
'fe_cal.csv': ['event_name_1', 'tm_d', 'tm_w', 'tm_m', 'tm_dw', 'tm_w_end'],
'fe_price.csv': ['sell_price',
'price_min',
'price_max',
'price_median',
'price_mode',
'price_mean',
'price_std',
'price_norm_max',
'price_norm_mode',
'price_norm_mean',
'price_momentum',
'price_roll_momentum_4',
'price_roll_momentum_24',
'price_end_digits'],
'fe_snap_event.csv': ['snap_transform_1',
'snap_transform_2',
'next_event_type_1',
'last_event_type_1',
'days_since_event',
'days_until_event'],
'shift_fe_dow_means_and_days_since_sale.csv': ['mean_4_dow_0',
'mean_4_dow_1',
'mean_4_dow_2',
'mean_4_dow_3',
'mean_4_dow_4',
'mean_4_dow_5',
'mean_4_dow_6',
'mean_20_dow_0',
'mean_20_dow_1',
'mean_20_dow_2',
'mean_20_dow_3',
'mean_20_dow_4',
'mean_20_dow_5',
'mean_20_dow_6',
'days_since_sale'],
'shift_fe_ipca_15_84.csv': ['index',
'ipca_15_84_comp_1',
'ipca_15_84_comp_2',
'ipca_15_84_comp_3',
'ipca_15_84_comp_4',
'ipca_15_84_comp_5',
'ipca_15_84_comp_6',
'ipca_15_84_comp_7',
'ipca_15_84_comp_8',
'ipca_15_84_comp_9',
'ipca_15_84_comp_10',
'ipca_15_84_comp_11',
'ipca_15_84_comp_12',
'ipca_15_84_comp_13',
'ipca_15_84_comp_14'],
'shift_fe_lags_1_14.csv': ['lag_1',
'lag_2',
'lag_3',
'lag_4',
'lag_5',
'lag_6',
'lag_7',
'lag_8',
'lag_9',
'lag_10',
'lag_11',
'lag_12',
'lag_13',
'lag_14'],
'shift_fe_rw_1.csv': ['shift_1_rolling_nanmean_3',
'shift_1_rolling_mean_decay_3',
'shift_1_rolling_nanmean_7',
'shift_1_rolling_mean_decay_7',
'shift_1_rolling_nanstd_7'],
'shift_fe_rw_2.csv': ['shift_1_rolling_nanmean_14',
'shift_1_rolling_mean_decay_14',
'shift_1_rolling_diff_nanmean_14',
'shift_1_rolling_nanstd_14',
'shift_1_rolling_nanmean_30',
'shift_1_rolling_mean_decay_30'],
'shift_fe_rw_3.csv': ['shift_1_rolling_nanmean_60',
'shift_1_rolling_nanmedian_60',
'shift_1_rolling_mean_decay_60',
'shift_1_rolling_nanstd_60',
'shift_1_rolling_nanmean_140',
'shift_1_rolling_mean_decay_140',
'shift_1_rolling_nanstd_140'],
'shift_fe_shifts_mom_1.csv': ['shift_8_rolling_nanmean_7',
'momentum_7_rolling_nanmean_7',
'shift_8_rolling_mean_decay_7',
'momentum_7_rolling_mean_decay_7',
'momentum_7_rolling_diff_nanmean_7',
'shift_29_rolling_nanmean_7',
'momentum_28_rolling_nanmean_7',
'shift_29_rolling_mean_decay_7',
'momentum_28_rolling_mean_decay_7',
'shift_29_rolling_diff_nanmean_7',
'momentum_28_rolling_diff_nanmean_7'],
'shift_fe_shifts_mom_2.csv': ['shift_8_rolling_nanmean_30',
'momentum_7_rolling_nanmean_30',
'shift_8_rolling_mean_decay_30',
'shift_29_rolling_nanmean_30',
'momentum_28_rolling_nanmean_30',
'shift_29_rolling_mean_decay_30'],
'shift_fe_shifts_mom_3.csv': ['shift_29_rolling_nanmean_60',
'shift_91_rolling_nanmean_60',
'shift_91_rolling_mean_decay_60']}
prep_data (cfg)
neptune (cfg)
Not implemented
cli_lgb_daily (path_cfg:str<pathtotheconfigurationjson>='cfg.json')
lgb_daily (path_cfg:str='cfg.json')
Train 1 model for each day of prediction accoring to path_cfg
.